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Abstract

In this paper we show how the highly restrictive design rulesof the recent sub-micro to nano-scale Integrated Circuit
technologies allow to use a limited number of pre-computed surface charge distributions as a set of fundamental template basis
functions in an efficient integral equation based 3D capacitance solver. Several examples verify that our solver can achieve final
accuracies of less than 2% using 5× to 30× fewer unknowns than standard piecewise constant basis functions for the same
accuracy, resulting in up to 25× speedups.

I. I NTRODUCTION

The state-of-the-art in efficient capacitance extraction methods for integrated circuits involves 2D cross section scanning, de-
termining wire adjacency, calculating 2D capacitance in a table lookup approach, and then reconstructing quasi-3D capacitance.
Such approach is indeed fast, yet it is accurate only for 2D structures. Full 3D structures (e.g. crossing wires in adjacent metal
layers) need the accuracy of electrostatic field solvers such as [1]–[4]. The most efficient of such tools are based on solving
integral equations using piece-wise constant basis functions combined with standard collocation testing and iterative techniques.
Such solvers are typically accelerated by fast matrix-vector products, which have a significant computational overhead, but
scale almost linearly with the number of conductors. Hence they are ideal for very large scale examples.

On the other hand, improving time and memory requirements bythe use of higher order basis functions such as piece-wise
linear and quadratic bases is a common practice in almost allnumerical communities when solving differential and integral
equations. Sometimes even more efficient solvers are obtained by employing or developing specialized basis functions with
“built-in” known physical properties such as sinusoidal bases for high frequency resonating antenna problems [5], loop-star
bases for diverge-free unknowns [6], conduction mode basesfor Helmholtz current distributions inside conductors [7]–[11], and
edge and corner bases for surface charge density in capacitance extraction problems for microelectromechanical devices [12].

As in [12], this paper investigates the use of specialized basis functions to represent effectively the surface charge density
distributions in integral equation based capacitance extraction solvers. However, the key idea in this paper is to exploit the
charge distributions properties due to the highly restrictive design rules of the recent sub-micro to nano-scale integrated circuit
and packaging technologies, as highlighted in Section III-A. As we will demonstrate in the example session, in this scenario the
edge and corner bases introduced in [12] are not required to achieved accuracies of about 5%, typically required by integrated
circuit and packaging applications. On the other hand, charge distributions and fringing fields induced by adjacent crossing
wires, when neglected, can easily generate unacceptable errors in the 20% range. Pre-computed surface charge distributions
shapes (defined in Section III-B) will be used in this work as specialized basis functions (Section III-C) to represent such
induced charge distributions. A similar idea was introduced in [9] for proximity effect inducedcurrents, as opposed tocharges.
An additional difference in this work is the idea of assembling the basis functions a priori and “on the fly” from just two basic
building blocks. In this way analytical formulas and numerical tabulation of the Galerkin coefficients for our limited number
of template building blocks can effectively limit the setupoverhead as shown in Section III-D, obtaining fast simulation times
and affordable memory requirements as demonstrated in the examples in Section IV.

II. BACKGROUND

A standard way to extract the capacitance matrix for an-conductor system embedded in a uniform medium with dielectric
constantε is to solve the integral equation

∫

S

ρ(r′)
4πε‖r− r′‖

dr′ = Φ(r) (1)

for the surface charge densityρ, given the electric potentialΦ(r). By expressing the charge densityρ(r′) = Σ jρ jψ j(r′) in a
linear combination ofN basis functionsψ j and by using the standard Galerkin testing method, (1) becomes

[

∫

Si

∫

S j

ψi(r)ψ j(r′)
4πε‖r− r′‖

dr′dr
]

ρ j =

∫

Si
ψi(r)Φ(r)dr (2)

where the integration in the brackets forms a system matrix,and ρ j is a vector ofN unknowns corresponding to each basis
function.
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(a) The shape and slope of the induced charge density (cross-section) of
the bottom wire are not affected by the width of the crossing wire.
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(b) Basis function instantiation and assembly process: a single basis is
constructed connecting one flat and two arch templates.

Fig. 1. Capturing charge density induced by crossing wires.

III. T EMPLATE INSTANTIATED BASIS FUNCTIONS

A. Observed Charge Density Properties for Typical IC Interconnect

One key observation is that the surface charges accumulating on conductor corners and edges, as well as the charges induced
on a conductor surface due to a nearby conductor, in typical IC interconnect geometries are generally quite confined. A second
key observation is that corner and edge charge accumulations affect the wire capacitances by no more than a few percent, and
therefore can be safely ignored for typical IC target accuracies of about 5%, as the first example in Section IV will verify. A third
key observation is that the shape and slope of the charge density induced by a nearby wire is the same regardless of the width
of the crossing wire as seen on Fig. 1(a). From the above observations, one can conclude that in order to represent most, ifnot
all, charge distribution scenarios in IC/package applications, specialized basis functions can be easily instantiated a-priori from
a very small number of pre-defined templates as shown for instance in Fig 1(b) for the two crossing wires, and as described in
more details for other cases in Section III-C below. One can further conclude that given the small number of template building
blocks, the coefficients of the Galerkin system matrix in eq.(2), representing the interaction between different bases, can be
either tabulated and retrieved very efficiently, or computed partially analytically as shown in Section III-D, therefore avoiding
expensive setup costs.

B. Definition of Charge Density Building Block Templates

We first define two simple 1D shape templates as follows:
• “Flat curve” template:TF(·) = 1, a 1D constant function.
• “Arch shape” template:TA(·,a,b,h), a family of 1D decaying functions. Arch templates are characterized by the three

parameters(a,b,h) defined in Fig. 1(b).

Using the two 1D template shapes above we define 2D building blocks:
• “Flat Building Block” : BF(u,v) = TF(u) ·TF(v),
• “Arch Building Block” : BA,u±(u,v) = TA(±u) ·TF(v) or BA,u±(u,v) = TA(±v) ·TF(u), for decaying in±u and±v directions,

respectively,

where(u,v) are local coordinates on each conductor face. In our original formulation we had defined other building blocks
such as corner and edge templates [12] shown in Fig. 3(b) and other blocks such asTA(±u) ·TA(±v). In our experimentations
we have however made the critical observation that only the Flat and Arch building blocks defined above are essential and
sufficient to achieve the target 5% accuracies of typical IC capacitance extraction.

C. Instantiation and Assembly of Charge Density Basis Functions from Building Block Templates

Fig. 1(b) shows an example of the instantiation and assemblyprocess for a basis function solely responsible to capture local
charge accumulation induced on the bottom conductor by a nearby crossing conductor. A left arch building block, a right arch
building block, and a flat building block are first instantiated to fit the appropriate dimensions of the neighboring wires. The
three blocks are then connected together to constitute asinglebasis function, hence they will contribute to a single unknown
in the final system (2). Each additional crossing wire will contribute a single extra basis function to the bottom conductor,
hence contributing a single extra unknown to the system.

Another typical example of such instantiation and assemblyprocess is illustrated in Fig 2(b) which shows one single basis
function constructed on the fly by the solver by instantiating and connecting three arch building blocks and one flat building
block in order to fit the wire dimensions shown in Fig. 2(a). The total number of basis functions used to represent the charge
density of all surfaces of the bottom conductor is 7, i.e. oneflat basis covering completely each face of each conductor, plus
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(a) Wires’ geometry.

0

1

2

3

x 10
−6

−1.5
−1

−0.5
0

0.5
1

1.5

x 10
−6

0

1

2

x 10
−6

(b) The single basis function representing the induced charge density
is assembled using three arch building blocks and one flat building
block.

Fig. 2. Instantiation and assembly process for partially overlapping wires

the basis function shown in Fig. 2(b). One can notice how additional building blocks of the formTA(±u) ·TA(±v) could have
been used to capture corner fringe. However as mentioned multiple times the simple basis function as shown in Fig. 2(b) is
necessary and sufficient for the target 5% accuracy of this problem.

A simple algorithm implementing the ideas illustrated in the two examples above has been developed (and cannot be included
because of space limitations) to instantiate and assemble basis functions from our two building blocks for any given collection
of wires in a Manhattan layout with rectangular wires.

D. Efficient System Matrix Assembly

In order to reduce the time required to calculate the Galerkin integrals for each of the system entry in eq. (2), we adopt a
partially numerical - partially analytical scheme, summarized in Table below. In order to further increase efficiency we truncate
and use a piecewise linear approximation for the arch shape.

Building Block Interaction Type Integration Schemes

Flat with Flat 3D analytical and 1D numerical

Flat with Arch 3D analytical and 1D numerical

Arch with Arch (different directions) 2D analytical and 2D numerical

Arch with Arch (same direction) Summation ofFlat with Arch

IV. EXAMPLES

Figure 3(a) shows the parametric sweep of aspect ratio and area for a single conductor solved using only one single flat
basis function over each face, combined with the standard Galerkin testing approach. This simple setup achieves less than
3% relative error. Including additional basis functions representing edge and corner singularities [12] as shown in Fig. 3(b)
achieves a significantly smaller relative error of 10−3%. This example however demonstrates that for the 5% accuracy required
by integrated circuit designs, edge and corner basis functions do not need to be included.

In the Table below we summarize the performance of several examples where we used the basis functions described in
Section III-C with a standard Galerkin testing, and we compare them to piecewise constant (PWC) basis with collocation
testing in uniform discretization. In both methods, systems are solved by standard Gaussian elimination. All our examples have
been run in Matlab on a desktop computer with a Xeon 2.93GHz CPU.

Example Partially overlapping wires Fig. 2(a) 7 by 7 buses Fig. 4(a) Routing wires between modules Fig. 4(b)

Relative Error 1.6% 2.1% 1.7%

This work PWC Improvement This work PWC Improvement This work PWC Improvement

Unknown Number 17 572 33× 966 4688 4.8× 120 1754 14.6×

Filling Time (sec) 0.03s 0.75s 25× 14.1s 13.3s 0.94× 0.35s 1.9s 5.4×

Solving Time (sec) < 0.1ms 0.015s > 150× 0.05s 3.3s 60.7× < 1ms 0.24s > 240×

Total Time (sec) 0.03s 0.76s 25.3× 14.2s 16.6s 1.2× 0.35s 2.2s 6.1×
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(a) Parametric sweep for capacitance error neglecting
edge, corner singularity basis functions
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(b) Edge and corner singularity basis functions

Fig. 3. Verification for neglecting singularity basis functions
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(a) 7 by 7 crossing bus example
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(b) Routing wires between modules

Fig. 4. Two larger examples

V. CONCLUSIONS

In this paper we have presented an integral equation based capacitance solver which instatiates on the fly a small number
of specialized basis functions to capture charge distributions induced by nearby conductors. In a medium size example,our
solver used a total of just 120 unknowns, obtaining a worst-case relative error less than 2% compared to the result extracted by
piecewise constant basis in a very fine discretization with tens of thousands of unknowns. Furthermore, the piecewise constant
basis method requires 1754 unknowns to produce the same 2% error in a coarser discretization. Hence, for the same 2%
accuracy, our algorithm requires approximately 14.6× fewer unknowns, resulting in an overall 6× speedup.
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